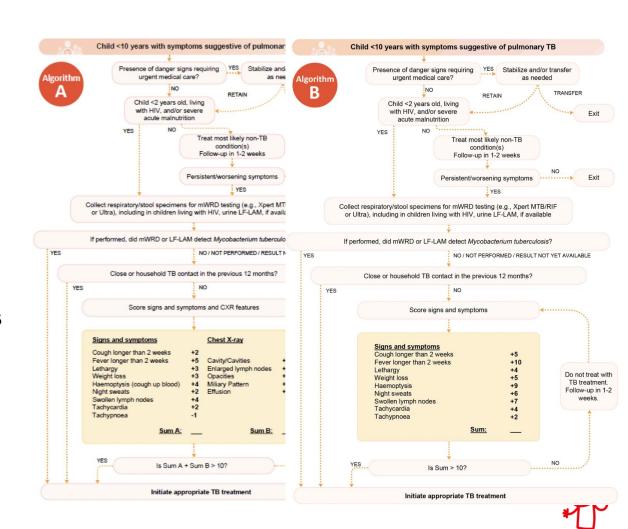
Experiences of Médecins Sans Frontières TACTIC project on the Treatment Decision Algorithms

Webinar: Enhancing TB service delivery for children and adolescents through collaborative experience sharing

December 18th, 2025



What is TB Treatment Decision Algorithm (TDA) and why it is needed?

- Data-driven approach, not reliant on expert opinion
- Clinical and patient information prioritized, including:
 - Age
 - HIV status
 - Undernutrition
 - Severity of symptoms
 - Contact with a TB case
 - Diagnostic tests and chest X-ray used when available, but:
- Treatment decisions remain simple without investigations
- Negative results do not delay treatment when clinical suspicion is high
- Rapid treatment initiation for highest-risk children (<2, undernutrition, CLHIV, children with TB contact history)

WHO Global TB report, 2025

TB incidence and mortality in children and adolescents, 2024

TB among all ages in 2024

1.2 million

children (0-14 years) developed TB in 2024 (11% of all TB)

727 000 adolescents

(10-19 year-olds) developed TB in 2012 (Snow et al, 2018)

10.7 million 1.23 million

TB deaths in 2024

174 000

TB deaths in 2024 (14% of all TB deaths)

Among deaths in HIV-negative children and young adolescents 0-14

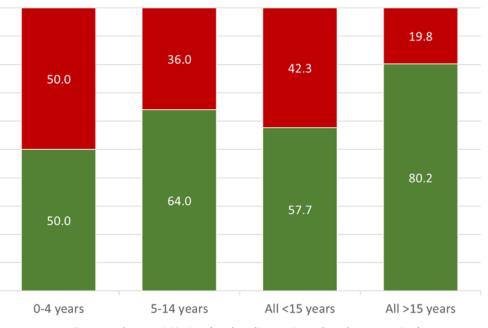
71% were in children <5 years

96% not access TB

(Dodd et al, 2017)

2 000

(1.1%) TB deaths in the 0-14 year age group were among children living with HIV



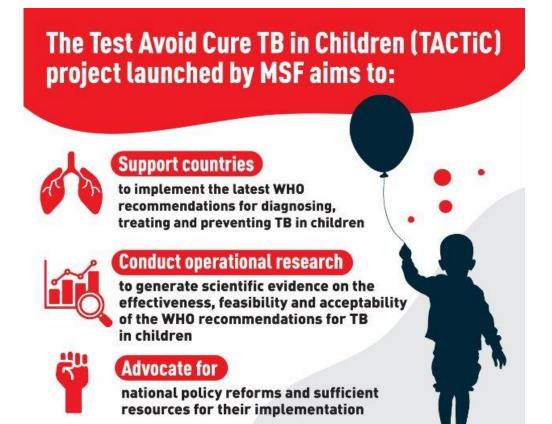
Global tuberculosis

report 2025

Remaining programmatic gaps

% of missing persons with TB in different age groups (2024)

■ Reported


■ Missing (under-diagnosis and under-reporting)

TDA Implementation

- 12 countries
- 52 projects

TDA Implementation

Results and lessons learned from TB AlgoPed Study (5 countries): TDA feasibility & acceptability

Contextual assessment and adaptation of tool use aligned with national guidelines and resources

- Phased implementation
- Integration into routine care for sustainability
- Early stakeholder engagement
- Targeted capacity building
- Continuous mentorship
- Simple monitoring indicators

Implementation of new tools like TDA is not just a clinical process, but also requires coordination with health systems and community awareness to be effective and sustainable

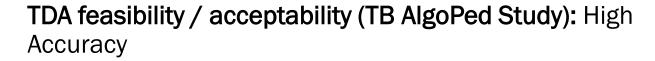
From Guidelines to Practice

 Updated MSF Guidelines: Ensuring alignment with the latest evidence-based practices.

 Medical Advocacy: Promoting updates of national TB guidelines.

 Dedicated Capacity: Required to address funding challenges and sustain program impact.

 Cross-Sector Integration: Collaboration across programs beyond TB, such as nutrition, maternal, and child health.


TACTIC: A SURVEY OF PAEDIATRIC TB POLICIES IN 14 COUNTRIES Summary Dashboard

* The medicines required are levellonax in 100mg dispersible subles (ds), monitorax in 100mg ds, law-rolld 150mg ds, clolarimine 30mg ds, cyclonerine 125mg mini capsule, we resulted in and benefit on a resulted and analysis of the control of t

TB AlgoPed Study

- On average, TDA double the number of diagnoses & treatments
- Most common reason to start treatment was clinicalradiological score
- Feasible including in settings without Xray
- 10 Key lessons for future implementation

MSF supported facilities implementing the WHO recommended treatment decision algorithms have seen: **1.5 - 5 times** increase in the number of children diagnosed and started on TB treatment* * preliminary data from TACTiC study TB ALGO PED

Contextual importance

High HIV prevalence Mozambique, Guinee Conakry	 High HIV/TB co-infection rates Higher risk of disseminated and severe TB Atypical clinical and CXR presentation Lower threshold for TB investigation TB-LAM Integration with HIV services
High undernutrition burden Nigeria, Niger	 High prevalence of SAM/MAM (malnourished children classified as presumptive TB) Malnutrition as a major TB risk factor Overlapping clinical signs (weight loss, infections) Shortened diagnostic pathway for SAM Early GeneXpert sample submission Integrated nutrition-TB management
Complex humanitarian crisis CAR, DRC, Somalia, South Sudan	 No "universal approach' to complex humanitarian contexts – each is unique Population displacement Fragile health systems - Limited access to health facilities Poor continuity of care TB diagnosis must be linked to guaranteed treatment availability Competing seasonal health priorities (Malaria, measles, diarrhea outbreaks)

X-ray

- Access and quality: Inconsistent availability, equipment limitations and technical issues, high costs
- Interpretation: Limited reading capacity
- Training and mentorship for X-ray technicians (technique) and clinicians (interpretation)
- Bedside support and telemedicine support
- Use TDA without X-ray when unavailable, equipment inadequate, or interpretation capacity limited
- Interest in POCUS and CAD

Too many children do not have access to chest X-ray

CHEST X-RAY

- High sensitivity
- Low operational cost
- Rapid results

There is lack of expertise in high TB burden settings to interpret children's chest X-ray images

Open Questions in clinical TDA use

1. Timing of TDA in clinical scenario.

- On admission vs during follow-up
- No clear timeframe for evolving clinical situations

2. Symptom Overlap & Clinical Evolution

- Overlap with undernutrition, pneumonia
- How to interpret TDA when the child improves with treatment
- Should TB still be considered despite improvement?

3. Integration with Other Diagnostics

- TDA not designed for ultrasound (POCUS)
- How to act on subtle US findings (e.g. pleural effusion)

4. Extrapulmonary TB

- Limited diagnostics in low-resource settings
- Need for specific guidance or parallel algorithms

5. Sample Collection

- "Collect respiratory specimen" without number specified
- New guidelines recommend multiple sample

6. Reporting & Documentation

- TDA not included in NTP reporting tools
- Limits monitoring of systematic use and impact

Challenges in implementation

- Updating guidelines ≠ automatic implementation at facility level
 - Incomplete country rollout, even where guidelines updated (Somalia, CAR, DRC)
 - Referral issues: some clinics unaware of TDA, may not accept patients
 - Countries delayed guideline updates due to anticipated rollout challenges
- Low to high increase of treatment demand after systematic TDA use:
 - Some contexts: 5 → 10 children/month
 - High-burden/malnutrition contexts: 20 → 50 children/month
- Need for careful planning: collaboration with partners, drug supply, staff training

Conclusion

- TDA provides a structured, evidence-based approach for pediatric TB treatment decision in children with pulmonary TB
- Improves early identification and rapid treatment initiation, especially for high-risk children
- Successful implementation requires:
 - Policy adoption and guideline updates, universal rollout
 - Capacity building and mentorship
 - Collaboration with MoH and partners
 - Community engagement
- Operational challenges remain: drug supply, workload, diagnostic limitations
- Continued research, adaptation, and advocacy are essential for sustainable use

Agustina watches as Dr Trisha Thadhani conducts a medical evaluation of her grandson lon, at one of MSF's active case finding sites for tuberculosis. Tondo, Manila, Philippines, March 2023.© EZRA ACAYAN

THANK YOU!

SCAN THIS QR CODE TO VISIT OUR WEBSITE

